author: Chris Fregly
2021-04-23
O'Reilly Media
Data Science On Aws: Implementing End-To-End Continuous Ai And Machine Learning Pipelines
AED
590
Easy Payment Plans
i
Same-day to 2-day delivery
Check availability in store
Please enable your browser location services in order for us to help you get personalized store listing based on your current location. Alternatively, you may proceed to choose store from list or search for your favorite store.
Store finder
With this practical book, AI and machine learning practitioners will learn how to successfully build and deploy data science projects on Amazon Web Services. The Amazon AI and machine learning stack unifies data science, data engineering, and application development to help level up your skills. This guide shows you how to build and run pipelines in the cloud, then integrate the results into applications in minutes instead of days. Throughout the book, authors Chris Fregly and Antje Barth demonstrate how to reduce cost and improve performance.
Apply the Amazon AI and ML stack to real-world use cases for natural language processing, computer vision, fraud detection, conversational devices, and more
Use automated machine learning to implement a specific subset of use cases with Amazon SageMaker Autopilot
Dive deep into the complete model development lifecycle for a BERT-based NLP use case including data ingestion, analysis, and more
Tie everything together into a repeatable machine learning operations pipeline
Explore real-time ML, anomaly detection, and streaming analytics on data streams with Amazon Kinesis and Managed Streaming for Apache Kafka
Learn security best practices for data science projects and workflows including identity and access management, authentication, authorization, and more
Apply the Amazon AI and ML stack to real-world use cases for natural language processing, computer vision, fraud detection, conversational devices, and more
Use automated machine learning to implement a specific subset of use cases with Amazon SageMaker Autopilot
Dive deep into the complete model development lifecycle for a BERT-based NLP use case including data ingestion, analysis, and more
Tie everything together into a repeatable machine learning operations pipeline
Explore real-time ML, anomaly detection, and streaming analytics on data streams with Amazon Kinesis and Managed Streaming for Apache Kafka
Learn security best practices for data science projects and workflows including identity and access management, authentication, authorization, and more
590.0
100.0
200.0
AED
590
Easy Payment Plans
i
With this practical book, AI and machine learning practitioners will learn how to successfully build and deploy data science projects on Amazon Web Services. The Amazon AI and machine learning stack unifies data science, data engineering, and application development to help level up your skills. This guide shows you how to build and run pipelines in the cloud, then integrate the results into applications in minutes instead of days. Throughout the book, authors Chris Fregly and Antje Barth demonstrate how to reduce cost and improve performance.
Apply the Amazon AI and ML stack to real-world use cases for natural language processing, computer vision, fraud detection, conversational devices, and more
Use automated machine learning to implement a specific subset of use cases with Amazon SageMaker Autopilot
Dive deep into the complete model development lifecycle for a BERT-based NLP use case including data ingestion, analysis, and more
Tie everything together into a repeatable machine learning operations pipeline
Explore real-time ML, anomaly detection, and streaming analytics on data streams with Amazon Kinesis and Managed Streaming for Apache Kafka
Learn security best practices for data science projects and workflows including identity and access management, authentication, authorization, and more
Apply the Amazon AI and ML stack to real-world use cases for natural language processing, computer vision, fraud detection, conversational devices, and more
Use automated machine learning to implement a specific subset of use cases with Amazon SageMaker Autopilot
Dive deep into the complete model development lifecycle for a BERT-based NLP use case including data ingestion, analysis, and more
Tie everything together into a repeatable machine learning operations pipeline
Explore real-time ML, anomaly detection, and streaming analytics on data streams with Amazon Kinesis and Managed Streaming for Apache Kafka
Learn security best practices for data science projects and workflows including identity and access management, authentication, authorization, and more
View full description
View less description
publisher
O'Reilly MediaSpecifications
Books
Number of Pages
400
Publication Date
2021-04-23
View more specifications
View less specifications
Customers